Three *Penicillium* species new for the mycobiota of Iran from soils of the National Park of Urmia Lake

Received: 11.07.2016 / Accepted: 27.11.2016

Rosita Samadi: MSc Graduate, Faculty of Agriculture, University of Tabriz, Tabriz, Iran

Mahdi Arzanlou: Associate Prof., Department of Plant Protection, Faculty of Agriculture, University of Tabriz, Tabriz, Iran (arzanlou@tabrizu.ac.ir)

Youbert Ghosta: Associate Prof., Faculty of Agriculture, University of Urmia, Urmia, Iran

Jos Houbraken: Senior Scientist (PhD), CBS-KNAW Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands

Abstract

In a survey on the biodiversity of *Penicillium* species in soils of the National Park of Urmia Lake (NW Iran), eight *Penicillium* isolates were isolated as members of the section *Citrina*. Based on a combination of cultural and morphological criteria, the isolates were identified as *Penicillium anatolicum*, *P. sanguifluum*, and *P. sizovae*. The identity of each species was further confirmed using sequence data of β-tubulin gene (*BenA*). Three species are reported and described here as new records for the mycobiota of Iran.

Keywords: Hypersaline soils, National Park of Urmia Lake, *Penicillium*, section citrina, taxonomy

معرفی سه گونه جدید پنیسلیلیوم برای مایکوبیوتای ایران از خاکهای پارک ملی دریاچه ارومیه

دریافت: 21/04/1395 / پذیرش: 07/09/1395

روزیتا صمی: دانشجوی کارشناسی ارشد بیماری‌شناسی گیاهی، دانشکده کشاورزی، گروه گیاهپزشکی دانشگاه تبریز، تبریز، ایران

مهدی ارزانلو: دانشیار قارچ‌شناسی و بیماری‌شناسی گیاهی، دانشکده کشاورزی، گروه گیاهپزشکی، دانشگاه تبریز، تبریز، ایران

یوبرت قوستا: دانشیار بیماری‌شناسی گیاهی، دانشکده کشاورزی، گروه گیاهپزشکی، دانشگاه ارومیه، ارومیه، ایران

یوس هوبراکن: پژوهشگر ارشد، مؤسسه قارچ‌شناسی فرهنگستان علوم، آترخت، هلند

خلاصه

در مطالعه نوع زیستی گونه‌های جنس پنیسلیلیوم در خاکهای پارک ملی دریاچه ارومیه، هشت جدایی پنیسلیلیوم متعلق به بخش سیرنیا جداسازی شدند. براساس ترکیبی از ویژگی‌های ریخت‌شناختی ماکروسکوپی و میکروسکوپی سه گونه از بخش سیرنیا شناسایی شدند. هر گونه‌های شناسایی شده با استفاده از توالی زن‌بنان توپولین تایید گردید. هر سه گونه به عنوان گونه‌های جدید برای ماکوبیوتای ایران گزارش و توصیف شدند.

واژه‌های کلیدی: بخش سیرنیا، پارک ملی دریاچه ارومیه، پنیسلیلیوم، تاکسونومی، خاکهای فوق شور
Introduction

Penicillium is a well-known cosmopolitan genus of molds which phylogenetically belongs to the family *Aspergillaceae* (Houbraken & Samson, 2011). There are currently more than 360 recognized species in this genus, divided among 25 sections based on multigene phylogenetic analysis (Houbraken & Samson 2011, Visagie et al. 2009, 2014, Park et al. 2015, Peterson et al. 2015). Species of this genus are economically, ecologically, and medically important microorganisms (Asan 2004) with respect to their positive impact as fermentation agents in food industry, production of antibiotics and novel enzymes as well as their negative impact as degraders of agricultural products, their toxicity and pathogenicity (Visagie et al. 2009, Houbraken & Samson 2011).

Penicillium is one of the most common fungi occurring in a diverse range of habitats, including soil, vegetation, air, indoor environments and various food products (Visagie et al. 2014). Members of this genus are soil common saprotrophs, which might constitute up to 67% of the total fungal biomass of certain soil habitats (Christensen et al. 2000, Visagie et al. 2009, Houbraken & Samson 2011). *Penicillium* species occur in diverse ecological niches ranging from normal to extreme environments as they are not very selective in reaction to abiotic growth conditions (Krijgsheld et al. 2013). These species can grow in environments with high salt concentration, low oxygen concentrations, high or low temperatures, alkalinity, low nutrient availability, solar radiation or the presence of heavy metals and other toxic compounds (Houbraken & Samson 2011, Cardoso et al. 2007). Studies on the occurrence of fungi in salterns have indicated that *Aspergillus* and *Penicillium* species are among the predominant genera in these environments (Cantrell et al. 2011, Samadi et al. 2013).

Taxonomy of *Penicillium* has proven troublesome since the description of the genus (Houbraken et al. 2011); such as, several taxonomic schemes have been proposed for species delineation within this genus (Frisvad & Samson 2004). Based on a recent multi-gene phylogenetic analysis, *Penicillium sensu stricto* is divided into two subgenera and 25 sections (Houbraken et al. 2011). Section *Citrina* comprises 40 species, which exhibit ubiquitous distribution in soil; also isolated from foodstuffs, leaf litter and indoor environments (Houbraken et al. 2010, 2011, Visagie et al. 2014). Members of this section can grow at low water activities and in substrates containing NaCl (Houbraken et al. 2011). The species in the section *Citrina* are morphologically characterized from other sections by restricted growth on Czapek’s agar, production of symmetrically biverticillate conidiophores, flask-shaped phialides (7.0–9.0 m long) and relatively small conidia (2.0–3.0 m in diameter) (Houbraken et al. 2011, Visagie et al. 2014). Cultural and morphological features such as colony diameter, presence or absence of cleistothecia/sclerotia, maximum growth temperature, shape, ornamentation and size of conidia are useful for species delimitation in the section *Citrina* (Houbraken et al. 2011).

The National Park of Urmia Lake (NW Iran) is a protected area and has a unique ecosystem, owing to variable ranges of soil salinity and pH. The aim of the present study was to explore the biodiversity of *Penicillium* section *Citrina* in the soils of the National Park of Urmia Lake using morphological and cultural data.

Materials and Methods

- Fungal isolates

A total of 46 soil samples were collected at 5–15 cm depth from different locations of the islands in National Park of Urmia Lake and coastal areas of Urmia Lake (NW Iran), during 2011–12. Isolations were subsequently made using the soil dilution plate and Warcup soil plate methods on MEA (malt extract agar) (Merck, Germany), GPY (glucose pepton yeast extract agar) and PDA (potato dextrose agar) culture media containing 0–30% NaCl (Nagamani et al. 2006). Pure cultures were established using a single spore technique (Crous et al. 2009).
Morphological analysis
Morphological identification was carried out according to Ramirez (1982) and Houbraken et al. (2011). For macro-morphological observations, isolates were grown on Czapek yeast autolysate agar (CYA; Visagie et al. 2014) and MEA. The isolates were inoculated at three points on each plate and incubated at 25°C in the dark for seven days. Colony growth characteristics were recorded on 7-days-old colonies (Frisvad & Samson 2004). Colony colours were described using colour charts of Rayner (1970).

For micro-morphology, characteristic structures such as conidiophores, stipe, phialides and conidia were mounted in 85% lactic acid and examined using a light microscope (Olympus-BX41). Thirty measurements were made for each relevant character. Photographs were captured using an Olympus digital camera system (DP 25) mounted on the microscope. Cultures were deposited in to the culture collection of University of Tabriz (CCTU) and culture collection of Applied and Industrial Mycology department (DTO) at CBS-KNAW Fungal Biodiversity Centre, the Netherlands.

Molecular identification
Genomic DNA was extracted as described in Arzanlou et al. (2016).

A part of β-tubulin gene (BenA) was amplified using primer sets T10 (O’Donnell and Eigelnik 1997) and Bt2b (Glass & Donaldson 1995). PCR was carried out in a final volume of 12.5 L containing 10–15 ng genomic DNA, 1.25 L of 10X reaction buffer, 60 L of 1 mM dNTPs, 1.5 mM MgCl2, 0.2 pM of each primer, 0.5 µL DMSO, and 0.5 U Taq Polymerase. The reaction was performed on a GeneAmp PCR System 9700 (Applied Biosystems, Foster City, CA) with cycling conditions consisting of 5 min at 96°C for primary denaturation, followed by 40 cycles of denaturation at 94°C for 30s, annealing at 56°C for 30s, extension at 72°C for 60s, with a final extension at 72°C for 7 min. PCR products were sequenced using BigDye Terminator v 3.1 (Applied Biosystems, Foster City, CA) Cycle Sequencing Kit according to the recommendation of the vendor and analyzed on an ABI Prism 3700 (Applied Biosystems, Foster City, CA). Raw sequence files were edited manually using SeqMan™II (DNASTAR, Madison, Wisconsin, USA) and a consensus sequence was generated for each of the sequences. Sequences were subjected to Megablast search analysis at NCBI’s GenBank nucleotide database for sequence similarity.

Results
Several Penicillium isolates were recovered from soils of the National Park of Urmia Lake, of those eight isolates were identified as members of the section Citrina based on cultural and morphological characteristics (Table 1). The isolates were identified as P. anatolicum, P. sanguifluum, and P. sizovae based on the present literature (Houbraken et al. 2011). Sequence data of BenA gene for each of the species showed substantial homology to representative reference strains. DTO 203-D5=DTO 204-C2=DTO 204-B9=98.9% with CBS 127032 (type of P. sanguifluum), DTO 204-C1=DTO 204-C2=98.6% with P. sanguifluum CBS 127032, DTO 203-F2=100% identical with P. sanguifluum CBS 127032; DTO 203-G1=99.8% with P. sizovae CBS 41.69, and DTO 204-A5=99.8% with P. anatolicum CBS 479.66. The sequences generated in this study were submitted in to GenBank (Table 1). The identified species are described alphabetically.
Table 1. List of *Penicillium* species belonging to section *Citrina* isolated from the National Park of Urmia Lake (NW Iran)

<table>
<thead>
<tr>
<th>Taxon</th>
<th>CCTU* No.</th>
<th>Other collection numbers</th>
<th>Substrate</th>
<th>Location</th>
<th>Isolated by</th>
<th>Date of isolation</th>
<th>BenA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Penicillium anatolicum</td>
<td>CCTU808</td>
<td>DTO 204-A5</td>
<td>Soil</td>
<td>Kabodan Island, Urmia</td>
<td>Ghosta & Samadi</td>
<td>2011</td>
<td>KY124549</td>
</tr>
<tr>
<td>P. sanguifluum</td>
<td>CCTU754</td>
<td>DTO 203-D5</td>
<td>Soil</td>
<td>Kabodan Island, Urmia</td>
<td>Ghosta & Samadi</td>
<td>2011</td>
<td>KY124543</td>
</tr>
<tr>
<td>P. sanguifluum</td>
<td>CCTU769</td>
<td>DTO 203-F2</td>
<td>Soil</td>
<td>Asper Island, Urmia</td>
<td>Ghosta & Samadi</td>
<td>2011</td>
<td>KY124544</td>
</tr>
<tr>
<td>P. sanguifluum</td>
<td>CCTU821</td>
<td>DTO 204-B9</td>
<td>Soil</td>
<td>Kabodan Island, Urmia</td>
<td>Ghosta & Samadi</td>
<td>2011</td>
<td>KY124545</td>
</tr>
<tr>
<td>P. sanguifluum</td>
<td>CCTU822</td>
<td>DTO 204-C1</td>
<td>Soil</td>
<td>Kabodan Island, Urmia</td>
<td>Ghosta & Samadi</td>
<td>2011</td>
<td>KY124546</td>
</tr>
<tr>
<td>P. sanguifluum</td>
<td>CCTU823</td>
<td>DTO 204-C2</td>
<td>Soil</td>
<td>Kabodan Island, Urmia</td>
<td>Ghosta & Samadi</td>
<td>2011</td>
<td>KY124547</td>
</tr>
<tr>
<td>P. sanguifluum</td>
<td>CCTU827</td>
<td>DTO 204-C6</td>
<td>Soil</td>
<td>Kabodan Island, Urmia</td>
<td>Ghosta & Samadi</td>
<td>2011</td>
<td>KY124548</td>
</tr>
<tr>
<td>P. sizovae</td>
<td>CCTU777</td>
<td>DTO 203-G1</td>
<td>Soil</td>
<td>Jadeh Darya (seaside), Urmia</td>
<td>Ghosta & Samadi</td>
<td>2011</td>
<td>KY124550</td>
</tr>
</tbody>
</table>

* CCTU: Culture Collection of University of Tabriz, Department of Plant Protection
** DTO: Culture Collection of Applied and Industrial Mycology Department, CBS-KNAW Fungal Biodiversity Centre, the Netherlands

- Macroscopic characteristics:
 - On MEA: colony diameter after seven days at 25°C, 18 mm; mycelium white; pure yellow, pigment diffusing into the surrounding agar; limited sporulation throughout in greyish blue-green shades; colony floccose; sulcate with centrally umbonate; reverse luteous to pale luteous; margin regularly and entire (Fig. 1).
 - On CYA: colony diameter after seven days at 25°C, 40 mm; mycelium white; yellow pigment diffusing into the surrounding agar; exudate yellow, produced in small droplets; sporulation throughout in grey-green shades; colony velvety to floccose; sulcate with centrally umbonate; reverse amber; margin regularly and entire (Fig. 1).

- Microscopic characteristics:
 - Mycelium with smooth walled hyphae, conidiophores arising from aerial hyphae, consisting of variously asymmetrical to symmetrical biverticillate, sometime mononverticillate, rarely trverticillate; forming smooth stipe, 2–3 µm in width; verticils of 2–3 metulae, divaricate, usually (7–)13–17(–35) × 2–3.5 µm, cylindrical, apically inflated to slightly inflated; bearing clusters of phialides of 2–11 elements in the verticil, mostly (6–)7.5–9.0(–14) × (2–)2.5(–5) µm, flask-shaped with distinct collula, smooth walled; conidial chains tending to adhere in well-defined loose, divergent short columns (h); conidia citrine, globose, finely roughened (1–)2(–3) µm in diameter. After 10 days on PDA, honey cleistothecia formed on the centre of colony, cleistothecia becoming brown at age, (160–)230–310(–500) × (5–)8–10.5 (–17) µm (Fig. 1).
Fig. 1. *Penicillium anatolicum*: a, b. Colony on MEA, c, d. Colony on CYA, e-g. Cleistothecia, h. Conidial head, i-k. Conidiophore, l. Conidia (Bar = 10 µm).

2. *Penicillium sanguifluum* (Sopp) Biourge, La Cellule 33: 105 (1923)

- Macroscopic characteristics:

 On MEA: colony diameter after seven days at 25°C, 17 mm; mycelium white; yellow pigment diffusing into the surrounding agar; exudate abundantly, orange; fairly abundant sporulation throughout in malachite green shades in centre and margin surrounded by a narrow white fringe of trailing hyphae; colony floccose; sulcate; reverse luteous; margin regularly and entire (Fig. 2).

 On CYA: colony diameter after ten days at 25°C 28 mm; mycelium white; orange soluble pigment diffusing into the surrounding agar; exudate abundant, orange; sporulation throughout in pale luteous shades; colony lanose; sulcate; reverse luteous; margin regularly and entire (Fig. 2).

- Microscopic characteristics:

 Mycelium with smooth-walled hyphae 1–1.5 µm wide, conidiophores variable in size, arising from the trailing hyphae, monovericillate; forming smooth stipe, (9–)21–40(–95) × 1–2 µm; apically vesiculate; bearing clusters of phialides of 2–10 elements in the vertical, terminally and subterminally, mostly (6–)7–8(–10) × 2–2.5 µm, flask-shaped with distinct collula; conidial chains tending to adhere in well-defined columns; conidia globose, 2 µm, smooth or finely roughened, citrine (Fig. 2).
Fig. 2. *Penicillium sanguifluum*: a, b. Colony on MEA, c.d. Colony on CYA, e. Exudate, f. Conidial head, g. Conidiophore, h. Conidia (Bar = 10 µm).

- Macroscopic characteristics:
 On MEA: colony diameter after seven days at 25° C, 30 mm; mycelium white; coloured pigment diffusing into the surrounding agar not produced; exudate colourless in the margin of colony; fairly abundant sporulation throughout in leek green shades in centre and margin surrounded by a narrow white fringe of submerged hyphae; colony velvety to floccose; sulcate with centrally umbonate; reverse buff; margin regularly and entire (Fig. 3).
 On CYA: Colony diameter after seven days at 25° C, 25 mm; mycelium white; coloured pigment diffusing into the surrounding agar not produced; exudate colourless in the centre of colony; fairly abundantly sporulation throughout in greyish blue-green shades in centre and margin surrounded by a narrow white fringe of submerged hyphae; colony velvety; sulcate; reverse primomose; margin regularly and entire (Fig. 3).
- Microscopic characteristics:
 Mycelium (1–)3–3.5(–4) µm with smooth walled, penicilli variable in size, borne either upon conidiophores arising directly from the mycelial mat or sometime from aerial hyphae, varying in length, consisting of variously symmetrical to rarely irregular divergent structures, biverticillate occasionally with an additional branch, rarely monoverticillate; forming smooth stip, 2–3 µm in width; apically flat; verticils of 1–5 metulae, usually (11–)13–14.5(–20) × (2–)3(–5) µm; cylindrical; apically inflated; bearing clusters of phialides of (1–)3–4(–7) elements in the verticil, mostly (6–)7–9(–14) × (2–)3(–4) µm, flask-shaped with short collula; conidial chains in more or less long, tending to adhere in well-defined divergent columns (i); conidia globose, with smooth to finely roughened wall, citrine, (1.8–)2–2.5(–5) µm in diameter (Fig. 3).
Fig. 3. *Penicillium sizoviae*: a, b. Colony on MEA, c.d. Colony on CYA, e-g. Conidiophore, h. Conidia, i. Conidial head (Bar = 10 µm).

Discussion

The present study was aimed to explore biodiversity of *Penicillium* section *Citrina* in soils of the National Park of Urmia Lake. Several isolates were recovered from the soils surrounding Urmia Lake with salinity ranging from 0.0003-72 ds/m salinity; of those eight isolates were identified in this study as members of the section *Citrina*. Species in section *Citrina* commonly occur in soil and exhibit worldwide distributions. Members of this section can grow at low water activities and in substrates containing various concentrations of NaCl (Houbraken et al. 2011). In the present study, members of this section were recovered from soils with salinity range of 0.001-35 ds/m.

Species in *Penicillium* section *Citrina* are characterised based on a combination of cultural and morphological features including restricted growth on Czapek’s agar, production of symmetrically biverticillate conidiophores, flask-shaped phialides (7.0–9.0 µm long) and relatively small conidia (2.0–3.0 µm in diameter) (Houbraken et al. 2011). However, identification of *Penicillium* species based on morphological features alone has proven troublesome, which is mainly due to overlap in micromorphology and lack of distinguishing morphological features among different species. In the last two decades, taxonomy of *Penicillium* and allied genera has largely been influenced by DNA sequence data; hence, sequence data from different genomic regions have been used to resolve taxonomy and phylogeny of this genus at different levels of interest. Sequence data from different genomic regions including ITS-rDNA region, β-tubulin (*BenA*), Cytochrome C oxidase I (*COX1*), Calmodulin (*CAL*), RNA polymerase II largest subunit (*rpb1*) and Translation elongation factor 1-alpha (*EF-1a*) genes have been widely used for species identification in *Penicillium* (Peterson 2000, Seifert et al. 2007, Visagie et al. 2014).

In the present study, *Penicillium* section *Citrina* isolates were assigned to three species, namely, *P. anatolicum*, *P. sanguifluum*, and *P. sizoviae*, based on an integration of cultural and morphological traits, and partial sequences of the *BenA* gene.

Penicillium anatolicum, *P. sanguifluum*, and *P. sizoviae* can be identified from each other and the other species in this section based on cultural and morphological characteristics. *Penicillium anatolicum* has been originally described from soil in Turkey (Houbraken et al. 2010, 2011); since then this species has
been isolated from soil in Florida and South Africa. In the present study, a single isolate of *P. anatolicum* was isolated from soils with 7 ds/m salinity in Kabodan Island. The important morphological features of *P. anatolicum* are production of yellow soluble pigments, metulae of unequal length with inflated tip (Houbraken et al. 2011). This species is phylogenetically related to *P. euglaucum*, and *P. argentinense*. However, *P. anatolicum* can be distinguished from *P. argentinense* by the lack of yellow soluble pigments in the later species (Houbraken et al. 2011). *Penicillium anatolicum* can be differentiated from *P. euglaucum* based on ascopores size, which are larger in the later species (Houbraken et al. 2011). *Penicillium gallaicum* is another species which produces yellow soluble pigments (citreoviridins); but, it differs from *P. anatolicum* by the presence of predominantly monoverticillate conidiophores, production of sclerotia and lack of ascoma (Houbraken et al. 2011).

Penicillium sanguifluum was isolated from soils of the National Park of Urmia Lake with 0.001–32 ds/m salinity. Six isolates from *P. sanguifluum* were isolated from Asper (one isolates) and Kabodan (five isolates) Islands. This species has been isolated from soil in Wyoming, USA and indoor air (the Netherlands) (Houbraken et al. 2011). The main morphological features of this species include monoverticillate conidiophores, luteous colour in reverse on CYA with the production of orange soluble pigment and growth on CYA at 30°C (Houbraken et al. 2011). *Penicillium sanguifluum* is phylogenetically related to *P. citrinum*, *P. hetheringtonii*, *P. steckii*, and *P. gorlenkoanum*; and can be differentiated from those species based on fast growth rate on MEA and formation of finely roughened conidia.

In the present study we characterized three *Penicillium* in the section *Citrina* from hypersaline soils of the Urmia Lake basin, considering the rich diversity of *Penicillium* species in soils of the National Park of Urmia Lake, we aim to further explore the biodiversity of this economically, ecologically, and medically important genus in this region.

Acknowledgment

This work was accomplished with financial aid from the University of Tabriz, Tabriz, Iran.

References

