Isolation and identification of thermotolerant and thermophilic fungi from soil and compost in Kermanshah province (West of Iran)

Document Type : Research Paper

Authors

1 MSc Student of Plant Pathology, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

2 Assistant Prof. of Plant Pathology, Department of Plant Protection, College of Agriculture, Razi University, Kermanshah, Iran

Abstract

An investigation was carried out on the occurrence of thermotolerantand thermophilic fungi in 11 soil samples collected from cultivated and natural regions in Kermanshah province (Mahidasht, Harsin, Kerend, Eslamabad-e Gharb, Qasr-e Shirin, Sarpol-e Zahab, Javanrood, Gilan-e Gharb), municipal waste compost and mushroom compost, 2017–19. Fungal isolates were recovered using the soil dilution plate method on potato dextrose agar at 45 and 50 °C. Totally, 24 isolates were obtained that were primarily identified using morphological characters and referring to valid taxonomic keys. DNA extraction was carried out using a Genomic DNA Purification kit. The ITS region (ITS1-5.8S-ITS2) of the ribosomal DNA was amplified using ITS1 and ITS4 primers. Fragments about 500–700 bp were amplified after sequencing deposited in GenBank. Based on morphological characters and sequence data of the ITS rDNA, these fungi were identified as: Aspergillus fumigatus, A. nidulans, A. niger, A. terrus, Melanocarpus albomyces*, Malbranchea cinnamomea*, Thermomyces dupontii*, Th. lanuginosus*, and Thielavia arenaria*. Asterisks indicate species that are new records for the mycobiota of Iran. The abundance of thermophilic fungi in municipal waste compost was higher than soil, and Aspergillus species were the most abundant fungi identified in this study.

Keywords


Article Title [Persian]

جداسازی و شناسایی قارچ‌های‌ متحمل به گرما و گرمادوست از خاک و کمپوست در استان کرمانشاه

Authors [Persian]

  • زهرا یوسفوند 1
  • صمد جمالی 2
  • هادی خاطری 2
1 دانشجوی کارشناسی ارشد بیماری‌شناسی گیاهی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران
2 استادیار بیماری‌شناسی گیاهی، گروه گیاه‌پزشکی، دانشکده کشاورزی، دانشگاه رازی، کرمانشاه، ایران
Abstract [Persian]

به منظور شناسایی قارچ‌های متحمل به گرما و گرمادوست، طی سال‌های ۹8-1396، نمونه‌برداری از خاک، کمپوست ضایعات شهری و کمپوست قارچ خوراکی در شهرستان‌های استان کرمانشاه (ماهیدشت، هرسین، کرند، اسلام‌آباد، قصر شیرین، سرپل‌ذهاب، جوانرود و گیلانغرب) انجام شد. جداسازی این قارچ‌ها از خاک و کمپوست به روش سری رقت روی محیط‌کشت عصاره سیب‌زمینی-دکستروز-آگار در دمای 45 و 50 درجه سلسیوس انجام شد. در مجموع، ۲۴ جدایه قارچ متحمل به گرما و گرمادوست به دست آمد. شناسایی اولیه جدایه‌ها براساس ویژگی‌های رشدی و ریخت‌شناسی و با استفاده از کلیدهای تاکسونومیکی معتبر صورت گرفت. برای شناسایی مولکولی، دی.ان.ای.، جدایه‌ها با استفاده از کیت خالص‌سازی دی.ان.ای. ژنومی استخراج و ناحیه ITS rDNA (ITS1-5.8S-ITS2) با استفاده از آغازگرهای عمومی ITS1و ITS4تکثیر شد. قطعات ۷۰۰–۵۰۰ جفت بازی به دست آمده از واکنش زنجیره‌ای پلیمراز، خالص‌سازی، توالی‌یابی و ویرایش شده و در بانک ژن ثبت شدند. با استفاده از ابزار جستجوی BLAST، توالی‌های ITS rDNA به دست آمده در این بررسی با سایر آرایه‌های معتبر مستخرج از بانک ژن مقایسه شد. در نهایت نه گونه شامل: Aspergilus fumigatus، A. nidulans، A. niger، A. terrus،Melanocarpus albomyces*، Malbranchea cinnamomea*، Thermomyces dupontii*، Th. lanuginosus* و Thielavia arenaria*شناسایی شد که گونه‌های ستاره‌دار برای فلور قارچی ایران جدید می‌باشند. فراوانی قارچ‌های گرمادوست در کمپوست ضایعات شهری بیش‌تر از خاک بود و گونه‌های آسپرژیلوس فراوان‌ترین قارچ‌های شناسایی شده در این تحقیق بودند.
 
 

Keywords [Persian]

  • ریخت‌شناسی
  • نواحی رونویسی شده داخلی
  • فیلوژنی
  • Sordariales
  • Onygenales
Abbas, S.Q., Niaz, M., Maan, A., Iqbal, J., Waqas, M., Ahmed, H., Liaqat, A. & Sidra, A. 2009. A report of Thermomyces lanuginosus Tsiklinsky on humans from Pakistan. Pakistan Journal of Botany 41: 1429–1432.
Abdel-Hafez, S.I.I., Moubasher, A.H. & Abdel-Fattah, H.M. 1977. Studies on mycoflora of salt marshes in Egypt. IV. Osmophilic fungi. Mycopathologia 62: 143–151.
Abdel-Hafez, S. 1982. Thermophilic and thermotolerant fungi in the desert soils of Saudi Arabia. Mycopathologia 80: 15–20.
Ahirwar, S., Soni, H., Prajapati, B.P. & Kango, N. 2017. Isolation and screening of thermophilic and thermotolerant fungi for production of hemicellulases from heated environments. Mycology 8: 125–134.
Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research 25: 3389–3402.
Apinis, A.E. 1967. Dactylomyces and Thermoascus. Transactions of the British Mycological Society 30: 573–582.
Arashiro, S. & Rodrigues, D.F. 2016. Extremophiles: Applications in Nanotechnology. Springer International Publishing AG. 208 pp.
Berka, R.M., Grigoriev, I.V., Otillar, R., Salamov, A., Grimwood, J., Reid, I. & et al. 2011. Comparative genomic analysis of the thermophilic biomass-degrading fungi Myceliophthora thermophila and Thielavia terrestris. National Biotechnology 29: 922–927.
Caretta, G., Del Frate, G., Della Franca, P., Guglielminetti, M., Mangiarotti, A.M. & Savino, E. 2019. Studies on the occurrence of fungi in a wheat-field. Boletín Micológico 3(1): 55–70.
Castresana, J. 2000. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Molecular Biology and Evolution 17: 540–552.
Chen, K.Y. & Chen, Z.C. 1996. A new species of Thermoascus with a Paecilomyces anamorph and other thermophilic species from Taiwan. Mycotaxon 50: 225–240.
Chiung, Y.M., Fujita, T., Nakagawa, M., Nozaki, H., Chen, G.-Y., Chen, Z.-C. & Nakayama, M. 1993. A novel quinone antibiotic from Malbranchea cinnamomea TAIM 13T54. The Journal of Antibiotics 46: 1819–1826.
Cooney, D.G. & Emerson, R. 1964. Methods of Isolation and Culture. Pp. 8–13. In: Thermophilic Fungi, an Account of their Biology, Activities and Classification. San Francisco: Freeman, W.H. & Company.
Ellis, D. & Keane, P. 1981. Thermophilic fungi isolated from some Australian soils. Australian Journal of Botany 29: 689–704.
Ershad, D. 2009. Fungi of Iran. Ministry of Jihad-e-Agriculture. 531 pp.
Gochenaur, S.E. 1975. Distributional patterns of mesophilous and thermophilous microfungi in two Bahamian soils. Mycopathologia 57(3): 155–164.
Grishkan, I. 2018. Thermotolerant mycobiota of Israeli soils. Journal of Basic Microbiology 58: 30–40.
Guarro, J., Abdullah, S.K., Al-Bader, S.M., Figueras, M.J. & Gene, J. 1996. The genus Melanocarpus. Mycological Research 100: 75–78.
Hall, T.A. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT, pp. 95–98. Proceedings of the Nucleic Acids Symposium Series 41: 95–98.
Houbraken, J., de Vries, R.P. & Samson, R.A. 2014. Modern taxonomy of biotechnologically important Aspergillus and Penicillium species. Advances in Applied Microbiology 86: 199–249.
Hsu, M.J. & Agoramoorthy, G. 2001. Occurrence and diversity of thermophilous soil microfungi in forest and cave ecosystems of Taiwan. Fungal Diversity 7: 27–33.
Hüttner, S., Nguyen, T.T., Granchi, Z., Chin-A-Woeng, T., Ahrén, D., Larsbrink, J., Thanh, V. N. & Olsson, L. 2017. Combined genome and transcriptome sequencing to investigate the plant cell wall degrading enzyme system in the thermophilic fungus Malbranchea cinnamomea. Biotechnology for Biofuels 10: 265.
Kalpana, C., Prem, L., Reena, K. & Anita, D. 2013. Characterization and detection of enzyme (amylase) produced by amylolytic fungi isolated from agricultural soil. International Journal of Current Technical Report Research 2(1): 311–319.
Kumar, S., Stecher, G., Li, M., Knyaz, C. & Tamura, K. 2011. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Molecular Biology and Evolution 35: 1547–1549.
Lu, H., Zhang, H., Shi, P., Luo, H., Wang, Y., Yang, P. & Yao, B. 2013. A family 5 β-mannanase from the thermophilic fungus Thielavia arenaria XZ7 with typical thermophilic enzyme Features. Applied Microbiological Biotechnology 97(18): 8121–8128.
Maheshwari, R., Bharadwaj, G. & Bhat, M.K. 2000. Thermophilic fungi: their physiology and enzymes. Microbiology and Molecular Biology Reviews 64: 461–488.
Maheshwari, R., Kamalam, P.T. & Balasubramanyam, P.V. 1987. The biogeography of thermophilic fungi. Current Science 56(4): 151–155.
Maijala, P., Kango, N., Szijarto, N. & Viikari, L. 2012. Characterization of hemicellulases from thermophilic fungi. Antonie van Leeuwenhoek 101: 905–917.
Mehta, D. & Satyanarayana, T. 2013. Diversity of Hot Environments and Thermophilic Microbes. Pp. 3–60. In: Satyanarayana, T., Littlechild, J. & Kawarabayasi, Y. (eds). Thermophilic Microbes in Environmental and Industrial Biotechnology. Springer, Dordrecht.
Millner, P.D., Motta, J.J. & Lentz, P.L. 1977. Ascospores, germ pores, ultrastructure, and thermophilism in Chaetomium. Mycologia 69: 720–733.
Morgenstern, I., Powlowski, J., Ishmael, N., Darmond, C., Marqueteau, S., Moisan, M.C., Quenneville, G. & Tsang, A. 2012. A molecular phylogeny of thermophilic fungi. Fungal Biology 116: 489–502.
Mouchacca, J. 1997. Thermophilic fungi: biodiversity and taxonomic status. Cryptogamie Mycologie 18: 19–69.
Olagoke, O.A. 2014. Amylase activities of some thermophilic fungi isolated from municipal solid wastes and palm-kernel stack. American Journal of Microbiology and Biotechnology 1: 64–70.
Palatsi, J., Laureni, M., Andrés, M., Flotats, X., Nielsen, H.B. & Angelidaki, I. 2009. Strategies for recovering inhibition caused by long chain fatty acids on anaerobic thermophilic biogas reactors. Bioresource Technology 100: 4588–4596.
Ross, R.C. & Harris, P.J. 1983. The significance of thermophilic fungi in mushroom compost preparation. Scientia Horticulturae 20: 61–70.
Saitou, N. & Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4: 406–425.
Salar, R.K. 2018. Thermophilic fungi: Basic concepts and biotechnological applications. CRC Press.
Salar, R.K. & Aneja, K.R. 2006. Thermophilous fungi from temperate soils of northern India. Journal of Agricultural Technology 2: 49–58.
Salar, R.K. & Aneja, K.R. 2007. Thermophilic fungi: taxonomy and biogeography. Journal of Agricultural Technology 3: 77–107.
Sandhu, D. & Singh, S. 1981. Distribution of thermophilous microfungi in forest soils of Darjeeling (Eastern Himalayas). Mycopathologia 74: 79–85.
Schwarz, P., Bretagne, S., Gantier, J.C., Garcia-Hermoso, D., Lortholary, O., Dromer, F. & Dannaoui, E. 2006. Molecular identification of Zygomycetes from culture and experimentally infected tissues. Journal of Clinical Microbiology44: 340–349.
Sharma, H.S.S. 1989. Economic importance of thermophilous fungi. Applied Microbiology and Biotechnology 31: 1–10.
Sharma, M., Chadha, B.S., Kaur, M. Ghatora, S.K. & Saini, H.S. 2008. Molecular characterization
of multiple xylanase producing thermophilic/thermotolerant fungi isolated from composting materials. Letters in Applied Microbiology46: 526–535.
Straatsma, G. & Samson, R.A. 1993. Taxonomy of Scytalidium thermophilum, an important thermophilic fungus in mushroom compost. Mycological Research 97: 321–328.
Tansey, M.R. & Brock, T.D. 1978. Microbial Life at High Temperatures: Ecological Aspects. Pp. 369–380. In: D.J. Kushner (ed.). Microbial Life in Extreme Environments. Academic Press, London.
Wang, Y., Fu, Z., Huang, H., Zhang, H., Yao, B., Xiong, H. & Turunen, O. 2012. Improved thermal performance of Thermomyces lanuginosus GH11 xylanase by engineering of an N-terminal disulfide bridge. Bioresource Technology 112: 275–279.
White, T.J., Bruns, T., Lee, S. & Taylor, J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. PCR protocols: a guide to methods and applications 18: 315–322.
Zhang, Z., Schwartz, S., Wagner, L. & Miller, W. 2000. A greedy algorithm for aligning DNA sequences. Journal of Computational Biology 7: 203–214.