Diversity and distribution of heterocystous cyanobacteria across solar radiation gradient in terrestrial habitats of Iran

Document Type : Research Paper

Authors

1 PhD Student, Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran

2 Prof., Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran

3 Assistant Prof., Department of Plant Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, G.C., Tehran, Iran

4 Assistant Prof., Irrigation and Reclamation Engineering Department, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran

10.22092/bot.j.iran.2023.360711.1336

Abstract

Cyanobacteria are important part of microflora in terrestrial ecosystems. Due to the presence of protective mechanisms in these microorganisms, they have potential to tolerate abnormal ecological conditions especially in arid and semi-arid habitats. In the present study, the diversity, distribution and community’s structure of the heterocystous cyanobacteria isolated from natural habitats of Iran with different solar radiation gradient were investigated. In total, 41 heterocystous morphospecies were isolated from soils of 21 studied sites. The isolated taxa were belonged to eight genera including Nostoc (54.68%) followed by the Calothrix (13.63%), Cylindrospermum (9.76%), Anabaena (7.32%), Trichormus (7.32%), Wollea (2.43%), Nodularia (2.43%), and Hapalosiphon (2.43%), respectively. According to the results, ecological factors such as solar radiation, relative humidity, and soil salinity can affect the diversity and distribution of these cyanobacteria in terrestrial ecosystems. The results also showed that, some taxa were dominant in stations with high radiation levels. Among the identified taxa, Nostoc was found to be the dominant genus at all stations, especially in sites with higher solar radiation levels. In addition, the presence of the brown Nostoc species in arid areas confirming their resistance due to their high amount of carotenoids content and other protective mechanisms that protect them from high light intensity.
 
 

Keywords


Article Title [Persian]

تنوع و پراکنش سیانوباکتری‌های دارای هتروسیست در طول شیب پرتوی خورشید در زیستگاه‌های خشکی ایران

Authors [Persian]

  • پردیس ایرانخواهی 1
  • حسین ریاحی 2
  • زینب شریعتمداری 3
  • زهرا آقاشریعتمداری 4
1 دانشجوی دکتری دانشکده علوم و فناوری‌های زیستی، گروه علوم و زیست‌فناوری گیاهی، دانشگاه شهید بهشتی، تهران، ایران
2 استاد دانشکده علوم و فناوری‌های زیستی، گروه علوم و زیست‌فناوری گیاهی، دانشگاه شهید بهشتی، تهران، ایران
3 استادیار استاد دانشکده علوم و فناوری‌های زیستی، گروه علوم و زیست‌فناوری گیاهی، دانشگاه شهید بهشتی، تهران، ایران
4 استادیار گروه مهندسی آبیاری و آبادانی، پردیس کشاورزی و منابع طبیعی، دانشگاه تهران،کرج، ایران
Abstract [Persian]

سیانوباکتری‌ها از اجزای اصلی و مهم میکروفلور اکوسیستم‌های خشکی به ‌‌شمار می‌آیند. این میکروارگانیسم‌ها به‌ دلیل داشتن مکانیسم‌های دفاعی مختلف توانایی مقاومت در مقابل شرایط سخت بوم‌شناختی نظیر زیستگاه‌های خشک و نیمه‌خشک را دارند. در مطالعه  حاضر، تنوع زیستی، پراکنش و ساختار جمعیتی سیانوباکتری‌های دارای هتروسیست در زیستگاه‌های طبیعی ایران براساس شیب پرتوی خورشید مورد بررسی قرار گرفت. به ‌طور کلی، 41 ریخت گونه  از 21 ایستگاه مطالعاتی جمع‌آوری و جداسازی شد. این آرایه‌ها به ‌ترتیب به هشت جنس، با سطوح تنوع زیستی متفاوت متعلق بودند که عبارتند از:Nostoc (54.68%) ،Calothrix (13.63%) ، Cylindrospermum (9.76%)، Anabaena (7.32%)،Trichormus (7.32%) ، Wollea (2.43%)، Nodularia (2.43%) و Hapalosiphon (2.43%). بر این اساس، عوامل بوم‌شناختی مانند میزان تابش نور خورشید، رطوبت نسبی و شوری خاک روی تنوع و پراکنش سیانوباکتری‌های مورد مطالعه اثرگذار بود. همچنین نتایج نشان داد، برخی آرایه‌ها در مناطق با سطح پرتوی زیاد پراکنش وسیع‌تری دارند. در میان آرایه‌های مورد بررسی، جنس Nostoc در تمام ایستگاه‌های مطالعاتی، به ‌ویژه در ایستگاه‌هایی با میزان تابش بالای نور خورشید به‌‌ عنوان جنس غالب شناخته شد. همچنین در بررسی حاضر مشخص گردید که مقاومت پرتوی اعضای این جنس می‌تواند به دلیل حضور مقادیر زیاد کاروتنویید و سایر مکانیسم‌های حفاظتی باشد که از آن‌ها در برابر تابش شدید نور خورشید محافظت می‌کند.
 
 

Keywords [Persian]

  • ریخت‌شناسی
  • زیستگاه‌های نیمه‌خشک
  • شدت تابش خورشیدی
  • عوامل بوم‌شناختی
  • کاروتنویید
Aghashariatmadari, Z. 2011. Evaluation of model for estimating total solar radiation at horizontal surfaces based on meteorological data, with emphasis on the performance of the angstrom model over Iran. PhD Dissertation, University of Tehran.
Ahmad, F.A. 2018. Valuation of solar power generating potential in Iran desert Areas. Journal of Applied Sciences and Environmental Management 22(6): 967–972.
Andersen, R.A. 2005. Algal Culturing Techniques. 1st. edn., Elsevier Academic Press. London.
De Caire, G.Z., De Cano, M.S., Zaccaro de Mulé, M.C., Palma, R.M. & Colombo, K. 1997. Exopolysaccharide of Nostoc muscorum (Cyanobacteria) in the aggregation of soil particles. Journal of Applied Phycology 9:
249–253.
De Chazal, N.M. & Smith, G.D.1994.Characterization of a brown Nostoc species from Java that is resistant to high light intensity and UV. Microbiology 140: 3183–3189.
De Martonne, E. 1926. Aerisme, et índices d’aridite. Comptesrendus de L’Academie des Sciences 182: 1395–1398.
Etemadi-Khah, A., Pourbabaee, A.A., Noroozi M., Alikhani, H.A. & Bruno, L. 2017. Biodiversity of isolated cyanobacteria from desert soils in Iran. Geomicrobiology Journal 34(9): 784–794.
Feizi, V., Mollashahi, M., Frajzadeh, M. & Azizi, G.H. 2014. Spatial and temporal trend analysis of temperature and precipitation in Iran. Ecopersia 2(4): 727–742.
Garcia-Pichel, F. & Belnap, J. 1996. Microenvironments and microscale productivity of cyanobacterial desert crusts. Journal of Phycology 32: 774–782.
Garcia-Pichel, F. & Castenholz, R.W. 1991. Characterization and biological implications of Scytonemin, a cyanobacterial sheath pigment. Journal of Phycology 27: 395–409.
Gao, K., Yu, H. & Brown, M.T. 2007. Solar PAR and UV radiation affects the physiology and morphology of the cyanobacterium Anabaena sp. PCC 7120. Journal of Photochemistry and Photobiology B 89: 117–124.
Hakkoum, Z., Minaoui, F., Douma, M., Mouhri, K. & Loudiki, M. 2020. Diversity and spatial distribution of soil cyanobacteria along an altitudinal gradient in Marrakesh area (Morocco). Applied Ecology and Environmental Research 18(4): 5527–5545.
Han, P.P., Shen, S.G., Wang, H.Y., Yao, S.U., Tan, Z.L., Zhong, C. & Jia, S.R. 2016. Applying the strategy of light environment control to improve the biomass and polysaccharide production of Nostoc flagelliforme. Journal of Applied Phycology 29: 55–65.
Han, T., Sinha, R.P. & Häder, D.P. 2003.  Effects of intense PAR and UV radiation on photosynthesis, growth and pigmentation in the rice-field cyanobacterium Anabaena sp. Photochemical and Photobiological Sciences 2(6): 649–654.
Hartmann, A., Albert, A. & Ganzera, M. 2015. Effects of elevated ultraviolet radiation on primary metabolites in selected alpine algae and cyanobacteria. Journal of Photochemistry and Photobiology B 149: 149–155.
Hokmollahi, F., Riahi, H., Soltani, N., Shariatmadari, Z. & Hakimi, M.H. 2016. A taxonomic study of blue-green algae based on morphological, physiological and molecular characterization in Yazd province terrestrial ecosystems (Iran). Iranian Journal of Botany 16(2): 152–163.
Khalili, A. & Bazrafshan, J. 2022. A comparative study on climate maps of Iran in extended de Martonne classification and application of the method for world climate zoning. Journal of Agricultural Meteorology 10(1): 3–16.
Khanipour Roshan, S., Farhangi, M., Emtyazjoo, M. & Rabbani, M.  2015. Effects of solar radiation on pigmentation and induction of a mycosporine-like amino acid in two cyanobacteria, Anabaena sp. and Nostoc sp. ISC26. European Journal of Phycology 50: 173–181.
Komárek, J. 2013. Süßwasserflora von Mitteleuropa, Bd. 19/3: Cyanoprokaryota 3. Teil/3rd part: Heterocytous Genera, Springer Spektrum.
Komárek, J. & Hauer, T. 2013. CyanoDB.cz-on-line database of cyanobacterial genera. World-wide Electronic Publication. University of South Bohemia & Institute of Botany AS CR. http://www.cyanodb.cz.
Komárek, J., Kaštovsk, J., Mares, J. & Johansen, J.R. 2014. Taxonomic classification of cyano-prokaryotes (cyanobacterial genera), using a polyphasic approach. Preslia 86: 295–335.
Komárek, J. 2016. A polyphasic approach for the taxonomy of cyanobacteria: principles and applications. European Journal of Phycology 51: 346–353.
Kooch, Y., Jalilvand, H., Bahmanyar, M.A. & Pormajidian, M.R. 2008. The use of principal component analysis in study of physical, chemical and biological soil properties in southern Caspian forests (north of Iran). Pakistan Journal of Biological Sciences 11(3): 366–372.
Lin, C.S., Chou, T.L. & Wu, J.T. 2013. Biodiversity of soil algae in the farmlands of mid-Taiwan. Botanical Studies 54(41): 1–12.
Llopis, P., García‑Abad, L., Pretel, M.T., Montero, M.A., Jordán, M.M. & Asencio A.D. 2022. Effects of climate change on the production of polysaccharides and phycobiliproteins by Nostoc commune Vaucher ex Bornet et Flahault. International Journal of Environmental Research 16: Doi: 10.1007/s41742-022-00401-0.
Martineau, E., Wood, S.A., Miller, M.R., Jungblut, A.D., Hawes, I., Webster-Brown, J. & Packer, M.A. 2013. Characterization of Antarctic cyanobacteria and comparison with New Zealand strains. Hydrobiologia 711(1): 139–154.
Moghtaderi, A. Taghavi, M. & Rezaei, R. 2009. Cyanobacteria in biological soil crust of Chadormalu area, Bafq region in central Iran. Pakistan Journal of Nutrition 8(7): 1083–1092.
Moradi, I., Mueller, R., Alijani, B., Ga, K. 2009. Evaluation of the Heliosat-II method using daily irradiation data for four stations in Iran. Solar Energy 83(2): 150–156.
Obana, S., Miyamoto, K., Morita, S., Ohmori, M. & Inubushi, K. 2007. Effect of Nostoc sp. On soil characteristics, plant growth and nutrient up take. Journal of Applied Phycology 19(6): 641–646.
Pathak, J., Sonker, A.S., Richa, R., Rajneesh, R., Kannaujiya, V.K., Singh, V., Ahmed, H. & Sinha, R.P. 2017. Screening and partial purification of photoprotective pigment scytonemin from cyanobacterial crusts dwelling on the historical monuments in and around Varanasi, India. Microbiological Research 8(1): 4–12.
Rajaniemi, P., Hrouzek, P., Kaštovská, K., Willame, R., Rantala, A., Hoffmann, L., Komárek, J. & Sivonen, K. 2005. Phylogenetic and morphological evaluation of the genera Anabaena, Aphanizomenon, Trichormus and Nostoc (Nostocales, Cyanobacteria). International Journal of Systematic and Evolutionary Microbiology 55(1): 11–26.
Rangaswamy, G. 1966. Agricultural Microbiology. Asia Publishing House. India.
Rastogi, R.P., Richa, Kumar, A., Tyagi, M.B. & Sinha, R.P. 2010. Molecular mechanisms of ultraviolet radiation-induced DNA damage and repair. Journal of Nucleic Acids. Doi: 10.4061/2010/592980.
Řeháková, K., Chlumská, Z. & Doležal, J. 2011. Soil Cyanobacterial and microalgal diversity in dry mountains of Ladakh, NW Himalaya, as related to station, altitude, and vegetation. Microbial Ecology 62(2): 337–346.
Rejmánková, E., Komárek, J. & Komárková, J. 2004. Cyanobacteria: a neglected component of biodiversity: patterns of species diversity in inland marshes of northern Belize (Central America). Diversity and Distributions 10(3): 189–199.
Rosic, N.N. 2019. Mycosporine-like amino acids: making the foundation for organic personalized sunscreens. Marine Drugs 17. Doi: 10.3390/md17110638.
Singh, S., Verma, E., Niveshika, Tiwari, B. & Mishra, A.K. 2016. Exopolysaccharide production in Anabaena sp. PCC 7120 under different CaCl2 regimes. Physiology and Molecular Biology of Plants 22(4): 557–566.
Sinha, R.P. & Hӓder, D.P. 2008. UV-protectants in cyanobacteria. Plant Science 174(3): 278–289.
Soltani, S., Saboohi, R. & Yaghmaei, L. 2012. Rainfall and rainy days trend in Iran. Climatic Change 110(21): 187–213.
Sözer, O. 2011. Carotenoids assist in assembly and functions of photosynthetic complexes in cyanobacteria. Dissertation, University of Szeged.
Srivastava, A.K., Bhargava, P., Kumar, A., Rai, L.C. & Neilan, B.A. 2009. Molecular characterization and the effect of salinity on cyanobacterial diversity in the rice fields of Eastern Uttar Pradesh, India. Saline Systems 5. Doi: 10.1186/1746-1448-5-4.
Stal, L.J. 2007. Cyanobacteria: Diversity and versatility, clues to life in extreme environment. Pp. 659–680. In: Seckbach, J. (ed.), Algae and Cyanobacteria in Extreme Environment. Springer. Netherland.
Tasie, N., Israel-Cookey, C. & Banyie, L. 2018. The effect of relative humidity on the solar radiation intensity in Port Harcourt, Nigeria. International Journal of Research 5(21): 128–136.
Tong, Y.J., Yang, H.D., Shaw, J.J., Yang, X.K. & Bai, M. 2021. The relationship between genus/species richness and morphological diversity among subfamilies of jewel beetles. Insects 12. Doi: 10.3390/insects12010024.
Wang, Z., Li, G., Huang, H., Zhang, W., Wang, J., Huang, S. & Zheng, Z. 2022. Effects of solar radiation on the cyanobacteria: diversity, molecular phylogeny, and metabolic activity. Frontiers in Ecology and Evolution 10.
Doi: 10.3389/fevo.2022.92881.
Wehr, J.D., Sheath, R.G. & Thorp, J.H. 2002. Freshwater algae of North America: ecology and classification. Aquatic Ecology Press. California.
Zancan, S., Trevisan, R. & Paoletti, M.G. 2006. Soil algae composition under different agro-ecosystem in north-eastern Italy. Agriculture, Ecosystems and Environment 112: 1–12.